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Abstract--The procedure of parameter estimation and the parameter estimates are not only affected by the 
measurement noise, which is present during any experiment, but are also influenced by the known model 
parameters. The most commonly used functional, which is based on the maximum likelihood principle, 
only accounts for the experimental noise but not the effect of the uncertainties in the known parameters. 
A new functional for parameter estimation has been proposed, which will also take into account the 
uncertainties in the known model parameters. It is shown that, in the presence of uncertainties in the 

known model parameters, the proposed functional is superior to previous functionals. 

INTRODUCTION 

At the current time two topics of emphasis in the 
study of heat and mass transfer processes are: (1) 
the development of analytical/computational models 
based on quite int~ficate theories ; and (2) the improve- 
ment of the methodology of experimentation to simu- 
late the natural process. The basic goal of both these 
topics is to simulate the responses of processes as 
accurately as possible. The inverse method combines 
these two approaches: relying on experimental 
measurements to validate the mathematical model. 
Using the inverse method, improved estimates of 
properties or parameters of the mathematical model 
are possible. The mathematical model of a certain 
physical process is usually taken to be a set of differ- 
ential equations with known and unknown 
coefficients. It can be suggested that the structure of 
the mathematical model is known, but that the par- 
ameters are either not known or are known only 
approximately. The additional information necessary 
for the inverse problem is the experimental obser- 
vation of the state of the model (for example the 
temperature). The inverse problem can then be con- 
sidered as a problem of identifying the unknown par- 
ameters of the mathematical model by minimizing a 
specific measure of performance. 

tAuthor to whom correspondence should be addressed. 

One of the first of such methods is the least-squares 
technique, suggested by Legendre [1], in which the 
sum of the squares of the differences between the 
experimental measurements and the calculated 
responses of the system is minimized. This approach 
is based on a deterministic view of the system. 
Additional measures of performance have been based 
on a stochastic description of the experimental noise. 
The estimates obtained from this latter approach are 
referred to as the maximum likelihood estimates. A 
number of practical applications of parameter esti- 
mation, based upon both approaches, have been in 
the fields of controls and hydrology. A comprehensive 
review of these techniques is given by Polis [2]. Recent 
years have seen applications of parameter estimation 
techniques to heat and mass transfer processes [3-5]. 

Although all the above-mentioned approaches con- 
sider the experimental noise to be stochastic, few of 
them take into account errors or uncertainties which 
might exist in the known parameters of the system. 
This paper presents a generalization of the inverse 
method which permits the estimation of the par- 
ameters when the known parameters are variables and 
are statistically related. The following sections develop 
the theory and give several examples of its use. In 
addition to parameter estimation, considerable 
emphasis has been given to the design of optimal 
experiments. A good survey of the techniques is given 
by Kubrusly and Malebranche [6]. A following paper 
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b known parameter vector 
Coy [ ] covariance operator 
E[ ] expected value operator 
f probability density function 
G covariance matrix of known 

parameters 
h heat transfer coefficient 
J proposed likelihood functional 
k thermal conductivity 
K number of observation times 
L likelihood functional 
N number of sensors 
N[0, 1] normally distributed random 

number with 0 mean and 1 standard 
deviation 

P number of parameters 
q eigenvector 
Q orthogonal matrix of eigenvectors 
S covariance matrix of temperature 

measurement 
t time 
T~ ambient temperature 
u unknown parameter vector 
Var [ ] variance operator 
V covariance matrix of temperature 

NOMENCLATURE 

x , y  
X 
Z 

sensor position 
vector of sensor positions 
measured temperature vector. 

Greek symbols 
F least square functional 
6h percentage variation in h 
6n percentage variation in measurements 
0 sensitivity matrix of the state of the 

system to b 
2 eigenvalue 
A diagonal matrix of eigenvalues 
ah standard deviation of h 
a, standard deviation of measurements 
• predicted temperature vector 

discrepancy between prediction and 
measurement vector. 

Subscripts 
i, j sensors 
k time 
l, m parameters. 

Superscript 
T transpose. 

will discuss the issue of optimal experiment design in 
relation to this new criterion. 

THEORY 

Consider a thermal system which can be modelled 
by a set of differential equations and model 
parameters. Of all the parameters involved in the 
model, let there be P unknown parameters represented 
by the vector u, while the rest of the parameters (say 
Q parameters) are known a priori and are represented 
by the vector b. In order to estimate the parameters, 
i.e. u, experimental observations of the responses of 
system are obtained at various locations (xl, yi) and 
times (tk), none of which need be uniformly spaced. 
Let N be the number of sensors used in the experiment 
and K the number of readings in time at these sensor 
locations. Then the experimental observations can be 
represented by Zk where, 

z[ = [z i ( tk) , i= 1,2 . . . .  N] k = 1,2 . . . . .  K. (1) 

In practice, the unknown parameters are estimated 
by minimizing a criterion expressed in terms of the 
residuals, where the residuals are the differences 
between the predicted responses of the system and 
the experimentally observed responses at the sensor 
locations and the sample times. Broadly speaking, 
there are two approaches to define this criterion, the 
least squares approach and the maximum likelihood 
approach. 

In the least squares approach to the inverse prob- 
lem, the unknown parameters, u, are estimated by 
minimizing the sum of the squares of the residuals, 
i.e. minimize F(u) where F is given as : 

K 

r(u) = ~ (Ok--Zk)T(Ok--Zk), (2) 
k = l  

and Ok is a vector of the predicted responses of the 
system at all the sensor locations based on the math- 
ematical model. For distributed parameter systems 
this involves the solution of the field equations : 

O~=[q~(xl, y,,tk), i =  1,2 . . . .  N] k =  1,2 . . . . .  K. 

(3) 

where xi, Yi is the location of the ith sensor and tk is 
the kth sample time. 

In the maximum likelihood approach, the problem 
is considered from a probabilistic point of view. The 
experimental measurements of the responses of the 
system are considered to be random in nature and the 
measurement errors are assumed to be spatially and 
temporally independent of each other and to be nor- 
mally distributed with a zero mean and a variance of 

2 This randomness exists only in the measured O'la, 

responses z (because of the experimental noise) and 
not in the predicted responses, O, because the math- 
ematical model of the system was taken as deter- 
ministic. The best estimates of the unknown par- 
ameters are those which maximize the likelihood of 
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occurrence of the measurements relative to the pre- 
dictions. In other words, the best estimate is that 
which maximizes the probabili ty density function of 
the measurements f (z ln) .  This estimate of u makes the 
measurement most likely and therefore the probability 
density function f (z lu)  is called the likelihood func- 
tion, given by : 

f (z lu)  = (2r0 N~ Det(Sk) 

where Sk is the covariance matrix of the measurements 
at time tk and is defined as : 

Sk = EI6zk ~SZ T] 6Zk = Zk--E[z~]. (5) 

Because of the exponential character of the density 
function it is convenient to deal with the logarithm of 
the likelihood function. The criterion for the esti- 
mat ion of the unknown parameters u is therefore 
defined by the likelihood functional L* : 

K 

L* = - 2 In f (z lu)  = NK In (2~) + ~ In [Det (Sk)] 
k = l  

K 
+ ~" [Ok(U)--z]TSk - ' [Ok(u) -zk] ,  (6) 

k=:l 

where the best estimates of u will minimize the like- 
lihood functional, L*. Assuming that the experimental 
noise is independent of the unknown parameters, the 
first two terms are', constants and the minimization of 
L* is equivalent to the minimization of L : 

K 

L -  ~ [Ok(u)--zklXS/,-'[Ok(U)--Zk]. (7) 
k = l  

If the variance of the measurement a, 2, is the same for 
all locations and readings, then the covariance matrix 
can be expressed as : 

Thus : 

S = a ~ I .  (8) 

K 
--2 

L = o n E (Ok--Zk) v (Ok--Zk). (9) 
k = l  

It can be seen that, under these restrictions on the 
noise of the measurements, the maximum likelihood 
approach reduces to the least squares approach. 

In the above approach, the measurements z are 
considered to be in error because of experimental 
noise while the predicted responses are taken to be 
error free. In reality, the accuracy of the predicted 
responses depends upon the calculational procedure 
and the degree of approximation used, e.g. finite 
difference or finite element, coarse vs fine mesh, etc. 
These calculations give rise to errors (termed type 1 
errors) in the predictions. In addition to these errors, 

the predictions will also exhibit variations,t  which are 
due to the uncertainties in the parameters used in the 
calculations (referred to as type 2 errors). Of  these 
two kinds of errors, type 1 errors can be mitigated by 
an astute choice of the numerical method or grids [6]. 
The effect of  the type 2 errors on the predictions can 
be considerable and there are no known techniques to 
predict or to reduce these effects. An example of the 
effect of type 2 errors can be found in ref. [7], where 
variations in surface emissivity and thermal con- 
ductivities had a strong influence on the predicted 
temperatures of a thermal protection system used in 
re-entry vehicles. Presuming that type 1 errors have 
been eliminated, the estimated values of the par- 
ameters will be influenced by the type 2 errors. There- 
fore, there is a need to develop a technique which 
will compensate for the type 2 errors in the inverse 
problem solution and will reduce the effect of these 
uncertainties on the estimated parameters. 

A logical approach to account for the type 2 errors 
in the numerical prediction is to consider the differ- 
ences between the predictions and the measurements. 
Let the residual be given as : 

~k = Ok -- zk, (10) 

where Ok, zk, and thus ~k, are assumed to be normally 
distributed and O~ and zk are assumed to be inde- 
pendent of each other. Since, by definition, 
E[Ok] = E[z~], the mean of Wk will be : 

E[v~] = 0, (11) 

and the covariance matrix Vk is given as : 

V~ = E[{V~ - E[V~]} {V~ - E[V~]} ~] 

= E[,~Ok 6Ok ~1 + E[6zk 6Z~ x ], (12) 

where 6Ok = Ok--E[Ok]. Because W is normally dis- 
tributed, the probability density function for T can 
be given as : 

f ( ~ l u )  = (2~) ~x Det(Vk) 

The criterion for estimation of the parameters, for this 
case, will then reduce to maximizing J, where J is 
given as : 

K 

J = - 2 l n f ( ~ f u )  = ~ In [Det (Vk)] 
k = |  

K 
+ E I I J k ( n ) T V k l l l ~ k ( l l ) "  ( t 4 )  

k = l  

In the above formulation, the covariance matrix Vk, 
equation (l 2), consists of two parts, the covariance of 
Zk due to the experimental noise and the covariance 

tAlthough these variations are not, strictly speaking, 
errors, we will refer to them as errors in subsequent sections. 
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of ~k due to the statistical nature of the known model 
parameters b. These known model parameters can be 
the physical properties, e.g. conductivity, heat 
capacity, etc. or they can be parameters defined on 
the boundaries, e.g. heat transfer coefficients, emiss- 
ivity, etc. The information about these parameters is 
usually obtained from prior estimates in terms of their 
mean values E[b] and covariances G. The covariance 
matrix G represents the uncertainties in the known 
parameters b (i.e. the diagonal terms) and the cor- 
relation between the parameters (i.e. the non-diagonal 
terms). Thus G permits the use of the knowledge of 
parameters which are inter-related through a common 
cause, e.g. heat and mass transfer coefficients. An 
extensive discussion of the effects of these uncer- 
tainties on the system response can be found in ref. 
[8]. It can be shown [8] that the first-order estimate of 
the covariance matrix E[6~,6~[] of the predictions 
is given by : 

E[tSOkr~l] = OkGO[ k = 1,2 . . . . .  K, (15a) 

where Ok is the sensitivity matrix defined as : 

O~(x,,y,, tk) 
(Ok)it OBt 

i = 1 , 2  . . . . .  N l = 1 , 2  . . . . .  P k = 1 , 2  . . . . .  K, 

(15b) 

while the covariance matrix E[rz, fz[] is calculated 
using equation (5). Therefore equation (12) can be 
expressed as : 

Vk = OkGOk x +Sk. (16) 

The advantage of using the J functional in place of the 
L functional will be demonstrated for the following 
example. 

EXAMPLE--THE ESTIMATION OF THERMAL 
CONDUCTIVITY 

Consider a slab of thickness l (= 0.04 m) with an 
initial temperature of 0°C with a convective heat trans- 
fer boundary condition on both the back (x = 0) and 
the front (x = l) surfaces. The plate has a conductivity 
k = 1.0 W m -~ °C-1 and volumetric heat capacity 
pc = 1.0 × 106 J m -3 °C -1. The plate is convectively 
heated with an ambient temperature of T~ = 1000°C 
on both the sides but with different heat transfer 
coefficients (hb = 5 W m -2 °C- '  on the back surface 
and hf = 20 W m -2 °C -1 on the front surface). The 
steady-state temperature distribution, being spatially 
constant, cannot be used to determine the thermal 
diffusivity of the plate or the heat transfer coefficients 
on the boundaries. On the other hand, the transient 
temperatures of the plate depend upon the thermal 
properties of the plate and the convective boundary 
conditions, and so can be used to estimate these par- 
ameters. 

Let the conductivity k of the plate be an unknown 
parameter which will be estimated by comparing 

experimentally measured temperatures with predicted 
temperatures. These experimentally measured tem- 
peratures are simulated by adding numerical noise to 
the solution of the direct problem with k = 1. This 
experimental noise is derived from a normally dis- 
tributed random number with zero mean. Because the 
accuracy of the estimated parameters is not linear with 
respect to the noise in the measured temperatures, two 
levels of noise were considered for this example, a low 
noise (rn = 1%) and a high noise (&, = 5%). The 
standard deviation of the measured temperatures, an, 
is given by : 

K N 

~ (6Jp(x,,yl, tk)N[O, 1]) z 
k = l i = l  

~.~ = ( 1 7 )  
KN--1 

where N[0, 1] is the normally distributed random 
number with zero mean and a standard deviation of 
unity. 

The predicted temperatures require the specification 
of the heat transfer coefficients, which in a real exper- 
iment are not known exactly. One approach (the 
Monte Carlo method) is to assume a reasonable range 
of values for the coefficients and to repeat the cal- 
culations for a great number of values sampled from 
this range. Because the standard maximum likelihood 
approach does not account for uncertainty in the 
'known' parameters (the convective heat transfer 
coefficients in this example) this sampling technique 
is the only approach possible. The method which we 
are presenting in this paper is designed to permit one 
to account for the uncertainty in the heat transfer 
coefficients by specifying a mean value and a standard 
deviation of the heat transfer coefficient. 

In order to compare these two approaches, let us 
consider that the estimate of the heat transfer 
coefficient on the front surface of the slab hr is not 
accurate and that its value is distributed about the 
mean value hf with a standard deviation of ~rh. This 
can be expressed similarly to the temperature noise as 
tr~ = (rhhr) 2. Again, because of the nonlinear nature 
of the relations, two levels of uncertainties in the heat 
transfer coefficient were considered, viz. 6h = 10% 
and &h = 30 °/0. For this problem, since there is only 
one parameter to be estimated (P = 1), u = k, and 
one parameter with uncertainty (Q = 1), b = hf, the 
covariances matrices G, Sk, and Vk reduce to scalars 
with G = a2, S = a, 2, Ok is found by differentiating 
the closed form analytical solution to the temperature, 
and Vk is found from equation (16). 

Numerical search method 
The estimated value of the conductivity is that 

which minimizes the functionals L [equation (9)] and 
J [equation (14)]. There are several numerical tech- 
niques which can be used to determine this minimum 
point of nonlinear functionals, ranging from the sim- 
ple direct search method to complex variants of the 
Newton-Raphson method. In this section, we wish to 
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Fig. 2. Effect of 10% uncertainty in the heat transfer 
coefficient on the estimated conductivity. 

demonstrate the superiority of  the J functional to the 
L functional, without introducing the effects of  the 
minimization technique. For  this reason we have 
chosen a single parameter problem (e.g. the estimation 
only of  k) with a single model  parameter uncertainty 
(hf) to which the straightforward direct search method 
can be applied. 

Figure 1 displays the behavior of  these two func- 
tionals based upon l0 equally spaced readings in time 
(K = 10), of  the experimental measurements at x = 0 
(iV = 1). The values of  L and J are dependent upon 
the convective heat transfer coefficient assumed in the 
calculation. Three cases were considered: (a) when 
the mean value of  the heat transfer coefficient, he, used 
in the calculation was exact (hr = 20) ; (b) when it was 
overestimated by 10% (hf = 22) ; and (c) when it was 
underestimated by 10% (hf = 18). In all three cases 
the uncertainty in hf was 10% (i.e. 5h = 10%). It was 
observed that, for the first case when hf was exact, both 
approaches correctly estimate the conductivity to be 
k = 1 W m - I  °C-~, as expected, but the curve for J 
was much shallower and the minimum value is harder 
to locate. Fo r  ca,;es (b) and (c) minimizing L gave an 
18% and 38% error in the estimated conductivity, 
respectively. On the other hand minimizing J gave rise 
to an error of  less than 2% in the estimated con- 
ductivity for both cases. 

The effect o f  a wide range of  assumed heat transfer 
coefficient (hf = 10-30) and the noise is illustrated in 
Fig. 2, where it is seen that L is extremely sensitive to 
the assumed value of  h r and even a slight error in hr 
leads to significant errors in the estimated value of  k. 
When the noise level in the measured temperatures 
is low compared to the uncertainty in hf (5, = 1%, 
5h = 10%) the functional J i s  very stable in estimating 
k. On the other hand, when the noise level is relatively 
high (fin = 5%, ~,~ = 10%) J is no better than L. The 
effect of  the uncertainty in hf is further demonstrated 
in Fig. 3, where 6h = 30% for the two levels of  noise. 
In this case, J performs well for both noise levels. 

The use of  two sensors was also studied. The second 
sensor was placed at x = I (N = 2). Again the per- 
formance o f  the J criterion was better than that of  the 
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Fig. 3. Effect of 30% uncertainty in the heat transfer 
coefficient on the estimated conductivity. 
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Fig. 4. Effect of 10% uncertainty in the heat transfer 
coefficient on the estimated conductivity for two sensors. 

L criterion. Figure 4 shows the performance of  both 
criteria for 6h = 10%. The L criterion is unimproved 
by the addition of  the second sensor. However,  for 
the J criterion, the second sensor substantially 
decreases the deleterious effect of  noise on the esti- 
mation of  the conductivity (compare the curves for J 
in Figs. 2 and 4). 
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Newton-Raphson method 
The minimization of the likelihood functional 

defined by equation (14) is a unconstrained nonlinear 
problem of optimization. In the example given, since 
only the conductivity is unknown and only one par- 
ameter has uncertainty, it is possible to use a direct 
search procedure to find the minimum point. In 
general, several parameters are sought and a multi- 
dimensional procedure is needed. Let u" be the esti- 
mated unknown parameters after the n iterations. 
Then the estimate after n +  1 iterations is given by 
u,+ t = u" + Au "+ ]. The functional at the n + 1 iteration 
is J (u" + ]) = J (u" + Au" + ]). Expressing this in a Taylor 
series expansion gives : 

J ( u "  + AU "+ 1) = J ( u " )  -4- [J'(un)]TAII n+ I 

+½(Au"+ ')TJ"(u")Au "+' + O(IIAu "+' 113), (18) 

where : 

and : 

~J(u") 
[J'(u")], - l = 1,2 . . . . .  P, 

Out 

a2J(u °) 
[J"(u")],,~ - l, m = 1,2 . . . . .  P. 

aut ~u,. 

The condition for minimization is therefore : 

[ SJ(un + Aun+ I ) ]  

J 

= x ( ¢ ) + j " ( ¢ ) A ¢  +' + O ( l l A ¢ + ' , b  = 0, (19) 

and thus : 

u "+' = u ' - t J " ( u " ) l - ' J ' ( u ' ) .  (20) 

While deriving expressions for J'(u") and J"(u") use 
was made of the matrix identity : 

0 In [Det (V~)] Tr (V~ -~ c~Vk~ 
Ou, - G/" 

The proof of  the above identity is given in the Appen- 
dix, Using this identity it can then be shown that : 

~J ~ I T r ( V u ' O V k ~  + 2  ( / [~(~k T I v k  (~k-z~) 

-- (+k -- zOTV~ - '  OVk V~-' (+k--  Zk)] (21a) 
8u~ d ' 

and : 

O2j 

Ou/Oum 

- -  r r  (V/ - '  dVk , c3V,'~ 
~u. v;  8u, J 

) Vk 

where : 

and : 

82V~ 

~ut Ou~ 

ou, V i  (Ok--zk) 

( 0 * k f  _ ,8*k  
+ 2 ~ Vk 8urn 

-zk) 

8Vk i 
+2(~k - -Zk)TVk I ~ u / V k  ((I~k --Zk) 

~2Vk ] 
--  (~[)k --  Zk)TVk 1 (~Ul 0U~-~ ' vk  I ((I~ k __ Zk ) , 

(21b) 

OVk ___ -- OO[ 8Sk (21C) 
~U t = 2~-JkG~Ul  + ~U 1 ' 

- -  = + 

(21d) 

In evaluating J '  and J", i.e. equations (21a)-(21d), it 
is necessary to determine the first- and second-order 
derivatives of • and O with respect to the unknown 
parameters u. But O, the sensitivity matrix, consists of 
first-order derivatives of • with respect to the known 
parameters b, equation (15b). This leads to third- 
order derivatives oftD. Hence evaluation of J '  and J" is 
computationally expensive and the solution procedure 
for equation (20) should be as efficient as possible. 
There are three approaches to evaluating these higher- 
order derivatives of the temperature field from the 
field equations : 

(a) simply differencing the results obtained from the 
solution of the field equations for u and u + Au 
[5]. This approach was used in the example pre- 
sented in this paper;  

(b) solve the differentiated field equations [9] ; and 
(c) using the adjoint method [10, 11]. 

In general, the technique for minimizing J takes the 
form of an iterative procedure which leads to a 
sequence of estimates, which, if the method is success- 
ful, converges more or less rapidly. Convergence is 
usual if the functional to be minimized is strictly con- 
vex and parabolic, at least in the neighborhood of the 
minimum, and that the initial guess is in this region 
of convexity [12]. In the absence of prior knowledge 
of the behavior of the functional it is difficult to ensure 
this. This is a common problem in the use of Newton's 
approach to minimization/maximization. A modi- 
fication to this approach was suggested by Goldfield 
et aL [13]. The modification uses a factor a in equation 
(20). This a is defined as : 

= 2p + g IlJ'(u")II (22) 
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where iv is the smallest eigenvalue of J"(u") and R is 
a positive weight. The recursive relation for the n + 1 th 
estimate then reduces to : 

u "+' = u" - [a"(u") +/~I]-' J'(u") 

6 =  ~0, f o r ~ > 0 ,  (23) 
' [~t, f o r ~ < 0 .  

Finally, the convergence criterion used in this algo- 
rithm is : 

Ilu "÷~ -u"l l  ~< 8, (24) 
Ilu"ll 

where ~ is the expected measure of accuracy. This 
algorithm, equation (23), was verified by comparing 
its results with those obtained by a direct search 
method. 

Equations (20)--(23) were used to minimize L [equa- 
tion (9)] and J [equation (14)] with a convergence 
criterion ofa = 0.001 and R selected to be the recipro- 
cal of the determinant of J". The rate of convergence 
is shown in Figs. 5 and 6. For both functionals the 
initial guess of the unknown parameter (conductivity) 
was taken to be 07, the noise level to be 6, = 1% and 
the uncertainty in the heat transfer coefficient to be 
6h = 300.  Figure 5 shows the rate of convergence for 
different values of hr. Figure 6 shows the c o r -  

1 . 7  

1 . 5  

1 " 3  

~8tlmatlon of C o n d u c t i v i t y  u s t n o  L end J 

~ n = ] ~ ,  ~ h = 3 0 ~  

L, hr  = ~ / m R - C  

~ L, hf- =2 IId/m~ -C 
' ~ J, hf =1~ lU/~lg--C 

~ L. hf • 19(,h"n~-C 

L ) ~ .,. hf- ,=,.,~-c 

7 / . 
._ / 

0 I 2 3 4 
N u m b e r '  o? Itet'~t Ions 

Fig. 6. Estimated conductivity during iterations. 

responding estimates of the conductivity k. Figure 5 
shows that if the functional L approaches the mini- 
mum monotonically then the functional quickly drops 
to the minimum, otherwise the approach is oscillatory. 
The functional J always approaches smoothly and 
gradually. It can also be seen that the hf value has no 
effect on the convergence of J. These observations are 
also seen in Fig. 6 where the successive estimates of 
the conductivity are plotted against the number of 
iterations and the oscillatory approach of the func- 
tional L is obvious. 

CONCLUSIONS 

A new functional for parameter estimation is pro- 
posed which will not only account for the effects of 
the experimental noise on the estimated parameters 
but, in addition, will minimize the effects of the uncer- 
tainties in the assumed model parameters upon the 
parameters being sought. The development of this 
new functional was achieved through the synthesis 
of two well-known approaches, viz. the principle of 
maximum likelihood, popularly used in inverse prob- 
lems with experimental noise, and the first-order, 
second moment approach used to study the effects of 
uncertainties in systems on the response of the system. 
Through the use of the example, it is demonstrated 
that, in the presence of uncertain model parameters, 
the proposed new functional is superior to the usual 
maximum likelihood approach. An efficient numerical 
algorithm for the minimization of the proposed func- 
tional has also been developed. 
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APPENDIX 

Matrix identities 
Statement I. Let V be a N x N real, positive definite, sym- 

metric matrix such that  each element of V is a real function 
of a scalar u. Let the eigenvalue of V be given by A and the 
corresponding eigenvector given by q such that Vq = 2q; 
then : 

I 1 A-l OV-1 0A 
V-  ~ u J q  = ~u q. ( a l )  

Proof. Since the eigenvectors are orthogonal : 

0q 0qT 
~uu = - q ~ - u  q" (A2) 

Also, multiplying the characteristic equation by V-~ gives 

1 
V - ' q  = ~q. (A3) 

Now let 

0qTq= 
Ou a, (A4) 

where a is a scalar quantity. 

Differentiating the characteristic equation and then mul- 
tiplying it by V-  1 gives : 

[V-1 0V 02 l-I l 0q 
0u ~u V-  J q  = [2V- - - I 1 ~  u. (A5) 

Substituting equations (A2), (A3) and (A4) in equation (A5) 
will give : 

I V OV 1 02 q 

Therefore, 2 - t  c?A/Ou is the eigenvalue of the matrix V -  
OV/Ou and proves statement I. 

Statement II. Let V be an N x  N real positive definite 
symmetric matrix such that each element of V is a real func- 
tion of a scalar u ; then : 

Oln[Det(V)] ( O V )  
gu Tr V-  1 ~-u " (A7) 

Proof. Let At, A2,...,  AN be the eigenvalues of the matrix 
V. Since matrix V is real and symmetric, all its eigenvalues 
are real numbers and all its eigenvectors are orthogonal. The 
matrix V can then be expressed as : 

V Q = Q A  or V = Q A Q  x, (A8) 

where Q is the orthogonal matrix of eigenvectors and A is the 
diagonal matrix of eigenvalues. Therefore the determinant of 
the matrix V will be given as : 

N 
Det (V) = Bet (Q) Det (A) Det (QT) = 1-I Ai- (A9) 

i=1 

Taking the derivative of the logarithm of the determinant 
leads to : 

In i Ai = i= l AFt--'Ou (A10) 

It can be shown that, for any matrix with distinct eigenvalues, 
the sum of all its eigenvalues is also equal to the sum of its 
diagonal terms. The proof  of this theorem can be found in 
Graybill [14] (Therorem 9.1.3, p. 299). Making use of this 
theorem and using Statement I, gives : 

V ~ - l O A i = T r  V -I ( A l l )  
i ~ "" Ou 

This proves statement II. 


